Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1972, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737472

RESUMO

Little is known about the placebo effects when comparing training interventions. Consequently, we investigated whether subjects being told they are in the intervention group get better training results compared to subjects being told they are in a control group. Forty athletes (male: n = 31, female: n = 9) completed a 10-week training intervention (age: 22 ± 4 years, height: 183 ± 10 cm, and body mass: 84 ± 15 kg). After randomization, the participants were either told that the training program they got was individualized based on their force-velocity profile (Placebo), or that they were in the control group (Control). However, both groups were doing the same workouts. Measurements included countermovement jump (CMJ), 20-m sprint, one-repetition maximum (1RM) back-squat, a leg-press test, ultrasonography of muscle-thickness (m. rectus femoris), and a questionnaire (Stanford Expectations of Treatment Scale) (Younger et al. in Clin Trials 9(6):767-776, 2012). Placebo increased 1RM squat more than Control (5.7 ± 6.4% vs 0.9 ± 6.9%, [0.26 vs 0.02 Effect Size], Bayes Factor: 5.1 [BF10], p = 0.025). Placebo had slightly higher adherence compared to control (82 ± 18% vs 72 ± 13%, BF10: 2.0, p = 0.08). Importantly, the difference in the 1RM squat was significant after controlling for adherence (p = 0.013). No significant differences were observed in the other measurements. The results suggest that the placebo effect may be meaningful in sports and exercise training interventions. It is possible that ineffective training interventions will go unquestioned in the absence of placebo-controlled trials.


Assuntos
Desempenho Atlético , Treinamento Resistido , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Teorema de Bayes , Força Muscular , Projetos Piloto , Treinamento Resistido/métodos , Levantamento de Peso
2.
Scand J Med Sci Sports ; 31(7): 1420-1439, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33735465

RESUMO

The purpose of the present study was to compare the effects of short-term high-frequency failure vs non-failure blood flow-restricted resistance exercise (BFRRE) on changes in satellite cells (SCs), myonuclei, muscle size, and strength. Seventeen untrained men performed four sets of BFRRE to failure (Failure) with one leg and not to failure (Non-failure; 30-15-15-15 repetitions) with the other leg using knee-extensions at 20% of one repetition maximum (1RM). Fourteen sessions were distributed over two 5-day blocks, separated by a 10-day rest period. Muscle samples obtained before, at mid-training, and 10-day post-intervention (Post10) were analyzed for muscle fiber area (MFA), myonuclei, and SC. Muscle size and echo intensity of m.rectus femoris (RF) and m.vastus lateralis (VL) were measured by ultrasonography, and knee extension strength with 1RM and maximal isometric contraction (MVC) up until Post24. Both protocols increased myonuclear numbers in type-1 (12%-17%) and type-2 fibers (20%-23%), and SC in type-1 (92%-134%) and type-2 fibers (23%-48%) at Post10 (p < 0.05). RF and VL size increased by 5%-10% in both legs at Post10 to Post24, whereas the MFA of type-1 fibers in Failure was decreased at Post10 (-10 ± 16%; p = 0.02). Echo intensity increased by ~20% in both legs during Block1 (p < 0.001) and was ~8 to 11% below baseline at Post24 (p = 0.001-0.002). MVC and 1RM decreased by 5%-10% after Block1, but increased in both legs by 6%-11% at Post24 (p < 0.05). In conclusion, both short-term high-frequency failure and non-failure BFRRE induced increases in SCs, in myonuclei content, muscle size, and strength, concomitant with decreased echo intensity. Intriguingly, the responses were delayed and peaked 10-24 days after the training intervention. Our findings may shed light on the mechanisms involved in resistance exercise-induced overreaching and supercompensation.


Assuntos
Núcleo Celular/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/fisiologia , Treinamento Resistido/métodos , Células Satélites de Músculo Esquelético/citologia , Adulto , Tamanho do Núcleo Celular , Proliferação de Células , Creatina Quinase/sangue , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Perna (Membro) , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Mialgia/fisiopatologia , Mioglobina/sangue , Tamanho do Órgão , Palpação/métodos , Esforço Físico/fisiologia , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/diagnóstico por imagem , Fluxo Sanguíneo Regional , Descanso , Células Satélites de Músculo Esquelético/fisiologia , Sensação , Fatores de Tempo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...